教科書沒教的事,AI 自己學會了!AlphaFold 揭開生物學的隱藏規則

教科書沒教的事,AI 自己學會了!AlphaFold 揭開生物學的隱藏規則

「這太容易了,我們是不是作弊了?」

這是 DeepMind 的 AlphaFold 團隊在看到初步結果時的第一反應。他們甚至打電話給工程主管,懷疑自己是不是不小心把答案洩漏給了 AI。因為在科學研究中,進展通常是緩慢而痛苦的,像這樣勢如破竹的突破,感覺太不真實。

但這不是作弊,這是 AI 展現出的一種全新智慧。

在 Two Minute Papers 最新一集的訪談中,諾貝爾化學獎得主 John Jumper 揭示了 AlphaFold 最令人震驚的一面:它不僅僅是一個預測蛋白質結構的計算工具,它似乎通過「無監督學習」(Unsupervised Learning),掌握了生物學中連人類都尚未完全理解的深層語法。

這場訪談讓我們看到,我們正處於一個科學典範轉移的時刻——從「實驗驗證」走向「AI 預測」,生物學正在被重寫為一門資訊科學。

當 AI 學會了人類沒教的事

我們常認為 AI 只是在模仿人類餵給它的數據。如果教科書上沒寫,AI 就不會知道。但 AlphaFold 打破了這個迷思。

John Jumper 分享了一個讓他困惑許久的時刻:當他們把 AlphaFold 應用於人體內的所有蛋白質時,發現有些預測結果看起來非常糟糕——長長的、像絲帶一樣亂七八糟的結構,完全不像教科書裡那些摺疊完美的蛋白質機器。

「這一定是錯的,」這是直覺反應。

但當團隊深入研究後,他們驚訝地發現,這些「亂七八糟」的區域,精準對應了生物學中的「無序蛋白」(Disordered Proteins)。這些蛋白質在自然狀態下本來就沒有固定結構。

重點是,DeepMind 並沒有教 AlphaFold 什麼是無序蛋白,訓練數據裡也沒有標註這些區域。AlphaFold 是通過觀察數十萬個蛋白質結構,自己「領悟」到了這個規則:如果這裡沒有穩定的結構,那就應該預測出低信賴度的長條狀。

這就像一個沒學過文法的孩子,讀了幾萬本書後,不僅學會了寫作,還自己發現了某些修辭技巧。AI 正在展現出超越人類經驗的泛化能力。

核心案例:AI 的「意外發現」

AlphaFold 的智慧還體現在它留下的「空白」中。

那些「錯誤」的空洞

在某些預測中,AlphaFold 會在蛋白質中間留下巨大的、看似不合理的空洞,或者將蛋白質彎曲成奇怪的 C 型。從單一蛋白質的角度看,這完全不符合物理規則(蛋白質通常是緊密堆疊的)。

但當科學家將這些預測與真實的生物環境比對時,真相大白:這些蛋白質在體內並不是單獨存在的。它們往往是三個、四個聚在一起(例如三聚體 Trimer),或者是包裹著另一個蛋白質。

AlphaFold 雖然只被要求預測單個蛋白質,但它「隱約知道」這裡應該有別的東西。它預留的空洞,剛好能完美塞進另一個蛋白質。這意味著 AI 學習到了蛋白質之間的「社交規則」(幾何互補性),即使沒有人明確教過它複合物的概念。

蛋白質設計的「數位風洞」

這種對生物物理規則的深刻理解,讓 AlphaFold 意外地成為了蛋白質設計的強力工具。

過去,科學家設計一個新蛋白質,必須先在實驗室合成,失敗了再重來,過程耗時耗資。現在,他們發現了一個新用法:把你設計的序列丟給 AlphaFold。如果 AlphaFold 預測不出你想要的結構,或者給出很低的信心分數,那你最好相信它——這個設計在現實中大概率會失敗。

研究顯示,使用 AlphaFold 作為過濾器,蛋白質設計的成功率提升了整整 10 倍。它就像是航空工業的「數位風洞」(Digital Wind Tunnel),在造出飛機之前,先在電腦裡吹一吹,看看會不會解體。

典範轉移:從實驗驗證到 AI 預測

AlphaFold 帶來的最大改變,不在於它解決了某個具體問題,而在於它徹底改變了科學研究的流程。

速度與規模的革命

在 AlphaFold 出現之前,解析一個蛋白質結構通常需要一位博士生花費數年時間,成本高達 10 萬美元。這是一項昂貴且充滿不確定性的手工藝。

現在,AlphaFold 可以在 10 分鐘內完成同樣的工作。DeepMind 已經釋出了 2 億個蛋白質結構預測,覆蓋了地球上幾乎所有已知的生物。這不僅僅是數量的增加,這是質的飛躍。當數據獲取的成本趨近於零,科學家就可以問以前「不敢問」的問題。

新的科學方法論

John Jumper 舉了一個受精卵研究的例子。科學家想知道精子表面的哪一個蛋白質與卵子結合。精子表面有 2000 多個蛋白質,用傳統實驗方法一個個測試是不可能的任務。

但現在,研究團隊可以讓 AI 跑 2000 次預測,看看哪個蛋白質能與卵子表面的受體完美契合。結果,AlphaFold 真的找出了一個候選者,隨後的實驗也證實了這一點。

這就是新的科學方法論:AI 預測篩選 → 鎖定目標 → 實驗驗證。AI 讓科學家從大海撈針,變成了在幾個候選者中做選擇題。

商業戰略:開源與商業的雙軌並行

AlphaFold 的影響力不僅止於學術界,它也正在重塑製藥產業的商業模式。這裡存在著一個有趣的「雙軌戰略」。

一方面,DeepMind 堅持「開源精神」,將 AlphaFold 2 的原始碼和 2 億個蛋白質結構預測免費公開給全球科學界。這是一種「廣度」的戰略,旨在最大化科學影響力,讓 AlphaFold 成為生物學的基礎設施(Infrastructure)。

另一方面,Alphabet 成立了一家新公司 Isomorphic Labs,由 Demis Hassabis 親自領軍,專注於將這些 AI 技術轉化為實際的藥物開發。這是一種「深度」的商業戰略。

價值 17 億美元的豪賭

這一戰略的價值在近期得到了驗證。Isomorphic Labs 宣布與製藥巨頭禮來(Eli Lilly)達成戰略合作。禮來支付了 4500 萬美元的預付款,並承諾如果研發順利,後續的里程碑付款將高達 17 億美元

為什麼製藥廠願意買單?

因為開源的 AlphaFold 雖然強大,但藥物研發需要更精細的「客製化」能力。Isomorphic Labs 使用的是更先進、未完全開源的下一代模型(如 AlphaFold 3 的商業版),能夠針對特定疾病靶點進行微調,甚至預測小分子藥物與蛋白質的結合(而不僅僅是蛋白質本身的結構)。

這揭示了 AI 在生技領域的商業邏輯:通用模型(General Model)做開源基建,垂直應用(Vertical Application)做商業變現。 開源是為了建立生態系與標準,而真正的商業護城河,在於如何用 AI 解決那些「最昂貴」的問題——比如縮短新藥開發週期。

John Jumper 的願景:第二階諾貝爾獎

儘管獲得了諾貝爾獎的殊榮,John Jumper 在訪談中表現得非常謙遜。他多次強調,AlphaFold 是一個「工具」。

「我在等那個『第二階諾貝爾獎』(Second Order Nobel),」他說,「也就是那個使用 AlphaFold,並結合自己的創造力,做出重大生物學發現的人。」

這是一個偉大的願景。他不想只當舞台上的主角,他更想當「造王者」。他希望 AlphaFold 能成為全人類科學家的賦能者(Enabler),降低科學探索的門檻。

未來的生物學家,或許不需要懂複雜的晶體繞射實驗,但必須懂得如何與 AI 協作。生物學正在變成一門資訊科學,而 AI 是解碼這套作業系統的關鍵鑰匙。

結論:解碼生命的作業系統

AlphaFold 的成功證明了一件事:生命現象雖然複雜,但其背後有一套可被計算、可被預測的邏輯。

我們正站在「數位生物學」的起點。AI 不再只是輔助工具,它正在幫助我們理解生命的深層語法,發現人類智力未及的規則。這不僅是 AI 技術的勝利,更是人類理解自身奧秘的一大步。

正如 John Jumper 所言,這場變革才剛剛開始。當我們擁有了解碼生命作業系統的能力,未來的醫療、藥物開發、甚至對生命本身的定義,都將被重新改寫。



敬請免費訂閱、贊助本電子報

Mosky 從零開始 AI 寫程式

折扣碼:FOXAI

課程連結和限時優惠網址:https://pse.is/8dqy89

折扣金額:$250

Read more

營收只有 Tesla 六分之一,估值卻更高:SpaceX 的 1.5 兆美元憑什麼?

營收只有 Tesla 六分之一,估值卻更高:SpaceX 的 1.5 兆美元憑什麼?

過去一週,關於 SpaceX 的新聞突然密集出現。1 月 29 日,路透社報導 SpaceX 正與 xAI 洽談合併,馬斯克在 X 上回了一個「Yeah」。隔天,路透社又獨家揭露 SpaceX 從未公開過的財務數據,80 億美元的 EBITDA、1.5 兆美元的 IPO 估值。同一時間,SpaceX 向美國聯邦通信委員會(FCC)申請發射 100 萬顆衛星,目的是建造太空 AI 數據中心。 這些新聞看起來各自獨立,但串在一起只說明一件事:馬斯克正在為史上最大的 IPO 鋪路。 80 億美元利潤,這個數字代表什麼? 先看路透社揭露的核心數據:SpaceX 去年營收

By Fox Hsiao
「加密貨幣是軟體,不是貨幣」,Fed 主席提名人的金融科技觀比你好?

「加密貨幣是軟體,不是貨幣」,Fed 主席提名人的金融科技觀比你好?

川普昨天(1月30日)正式提名 Kevin Warsh 接任聯準會主席。財經媒體的焦點都在他的鷹派立場、對 QE 的批評、以及可能的利率政策走向,但這些分析都漏掉了一個重點:Warsh 對金融科技的看法,跟傳統央行官員非常不一樣。 2025 年中,Warsh 在加州 Simi Valley 的雷根國家經濟論壇上,接受了華爾街日報記者 Greg Ip 的訪談。那時候離他被提名還有大約半年,沒有人知道他會成為下一任 Fed 主席人選。但這場訪談透露出很多他對貨幣政策、加密貨幣、AI 和央行角色的看法,現在回頭看格外有意義。 在這場訪談中,Warsh 對加密貨幣、CBDC 和 AI Agent 的論述,透露出他用「軟體」的框架在思考這些議題,跟傳統的「貨幣政策」框架完全不同。 加密貨幣是「

By Fox Hsiao
Unity 暴跌 24%,但遊戲專家全說「反應過度」:他們知道什麼?

Unity 暴跌 24%,但遊戲專家全說「反應過度」:他們知道什麼?

一天蒸發數百億美元 2026 年 1 月 30 日,美股遊戲類股集體崩盤。Unity 單日暴跌 24%,創下 2022 年以來最慘單日跌幅,Roblox 下跌 13%,AppLovin 重挫 17%,就連 Take-Two 和 CD Projekt 也分別下跌 7.9% 和 8.7%。原因只有一個:Google DeepMind 發布了 Project Genie,一個可以用文字提示詞生成可互動 3D 世界的 AI 工具。 投資人的邏輯很直觀:如果任何人都能用一句話生成遊戲,那遊戲引擎公司和遊戲開發商還有什麼價值?Unity 做的事情,AI 現在也能做了,對吧?

By Fox Hsiao
12 億變 120 億:紅杉合夥人的 SpaceX 投資內幕

12 億變 120 億:紅杉合夥人的 SpaceX 投資內幕

Elon Musk 可能是當代建立最多「品類定義型」公司的創辦人,而紅杉資本合夥人 Shaun Maguire 投資了其中五家:SpaceX、xAI、Neuralink、The Boring Company 和 X。 2019 年,Maguire 開始投資 SpaceX,累計投入約 12 億美元,當時公司估值 360 億美元。到了 2025 年,這筆投資價值約 120 億美元,SpaceX 估值來到 8000 億美元。十倍回報,聽起來是個漂亮的投資故事,但 Maguire 在最近一次接受播客"Sourcery with Molly O'Shea&

By Fox Hsiao