【客座文】MCP 是怎樣讓世界又更好一點點

最近研究 AI 領域的熱門新概念 MCP,原本覺得自己已經理解了,但當我第一次親眼看到 AI 透過 MCP 一口氣完成原本用 ChatGPT 要反覆多次才能解決的問題時,那種震撼感徹底顛覆了我的想像!發現自己對 MCP 從「理解」跟「體會」還是有一段落差。寫了一篇把我自己的心得打下來當作梳理自己的想法。

【客座文】MCP 是怎樣讓世界又更好一點點
mountains by GPT 4.5
本文作者,林裕欽,Dcard 共同創辦人與CEO,本文將帶您深入了解MCP如何突破傳統語言模型的限制,讓AI不僅能「說」,更能「做」。從理論到實踐,從現狀到未來,作者以親身體驗分享這項技術如何通過觀察與行動的循環,以及跨領域整合的網路效應,為我們的工作與生活帶來改變。

最近研究 AI 領域的熱門新概念 MCP,原本覺得自己已經理解了,但當我第一次親眼看到 AI 透過 MCP 一口氣完成原本用 ChatGPT 要反覆多次才能解決的問題時,那種震撼感徹底顛覆了我的想像!發現自己對 MCP 從「理解」跟「體會」還是有一段落差。寫了一篇把我自己的心得打下來當作梳理自己的想法。

▍MCP:讓 AI 把語言變成咒語 From language to spell

LLM 全文是 Large Language Model 大型語言模型,我們平常在使用 ChatGPT 的時候就是輸入一些文字、也是輸出一些文字。我們之所以會覺得 LLM 做出來得很聰明,把它稱為 AI,是因為那些文字用特定人類喜歡的規則排列。

例如蘊含很多知識量、條理分明、或富有創造力。然而不論這些文字多棒,單純資訊輸入輸出,能做的事情還是有限。我們使用 ChatGPT 時經常需要剪下貼上、或是按照 LLM 輸出的指示在現實生活中一步一步操作。有時候不小心做錯了、或是得到不如預期的結果,還要想辦法描述給 LLM 發生了什麼事情,等待下一步指令,實在令人很沮喪。

而 MCP (Model Context Protocol)的出現就是希望解決這樣的問題!MCP 是由 Claude 母公司 Anthropic 提出來的統一規範,讓 LLM 有了「控制」跟「觀察」其他事物的能力。LLM 一樣還是只是會文字的輸入輸出,但只要 LLM 按照規則輸出文字,就會由 MCP (client server host 架構) 把相關文字解讀成指令,去跟其他支援 MCP 的軟硬體互動。就像是有些文字突然變成咒語一般,讓依然只需要負責文字的 LLM 有了更多能力。

▍更好的觀察帶來更好的行動 Better Observations leads to better actions

看完第一段,你可能會用很多方式去描述:「這就是 API 的 API 吧!」「這是 AI 界的 USB!」這些說法都正確,但對有智能的 AI 的來說,改進不僅止「接起來」。

想像一個場景,今天如果我們左手打直拿著手機,再用右手點擊畫面上的一點,相信很多人都能夠輕鬆做到。然而同樣的任務,如果要求你只看一眼後閉上眼,右手再開始動作,要精準點擊到目標的難度就會大大大提升。這是因為一個看似簡單的動作,我們在運動的過程持續透過眼睛觀察去調整。

大腦會根據觀察到的訊號,時時調整每條相關肌肉的發力,最後達成看似簡單的目標。如果不會觀察,就很難把事情做好。繪畫、做菜、音樂、打球等皆是如此。每一次的短暫觀察與動作行為,讓每個任務變簡單,集合在一起就讓人類可以完成各式各樣了不起的事情。

最早將這樣觀察與行動循環帶入 LLM 領域的概念是 Agent。而早期的 Agent 能使用的外界工具有限,例如 Web Search 搜索網路上的結果。而 MCP 大大降低開發工具給 LLM 的門檻,同時賦予 LLM 「觀察」與「控制」外在事物的能力,讓許多任務透過觀察與控制循環得到更多資訊,達成原先 LLM 沒辦法一次就做到的事情。只看一眼後閉上眼睛,就像是我們過去下 prompt 指令一樣,希望 LLM 高表現一次就吐出正確答案。

而有了 MCP 後的 LLM 可以先「試試看」更多事情。例如叫 AI 寫個 3D 遊戲。它可以先試寫一段程式碼,透過 MCP 控制檔案系統跟遊戲編譯器,讓寫出來的程式碼跑起來看看。如果一但發現物理邏輯不如預期、或跑起來光線反射跟原先要求不一樣,可以再換段程式碼寫法,再試一次。

如此往復,讓遊戲越來越靠近用戶的要求。現在支援 MCP 的軟硬體還不算多,但正在以飛速增加中。最基礎如主流資料庫 mysql, postgres, bigquery 都有開源的 MCP 支援。上班族常用的 Excel、短推文媒體 X、財經資訊 Yahoo Finance 也都有 MCP 支援。因為能「試試看」的事情變多了,能做到的複雜任務也比過去多的更多。(ps. 懂寫程式的讀者可以去下載剛出爐的 claude code!寫程式的體驗會有 10x 的感受,看著 AI 自己寫 debug 程式碼試試看為什麼有 bug 的時候,我還記得自己在電腦前叫了出來!)

▍跨領域的網路效應 The Network Effects of Cross-Domain Integration

跨領域的人才能夠做出許多不可思議的事物。例如懂多國料理做法的廚師,能夠融合不同手法創作出新的料理。懂影像、音樂、心理學的講者,或許能把演講帶到下一個高度。人類世界有許多突破性的進展,是因為跨領域的借鏡跟串聯,最後形塑出許多美好事物。

我自己第一次體會到 MCP 震撼的時候,是把多個不同資料庫 MCP (postgres, bigquery) 設定好的第一次提問。原先需要好幾次 LLM 生成 SQL、查表格 、我再手動跑去不同介面執行的問題,支援 MCP 的 claude 一次提問就幫我完成。是 LLM 時代後又一次 10x 效率提升。

這時我想到如果掛上 dashboard (e.g. redash) 的 MCP。瞬間用自然語言產生一張可以持續使用、修改 dashboard 的全過程就被實踐了!這個過程不是簡單的自動化,而是 LLM 有意識的根據當前情境,做出下一步選擇,最後完成的傑出任務。每多一個 MCP,LLM 就對多一個領域有更多理解與控制的能力。

就像是有網路效應一般,能做到的排列組合以非線性增長。想像未來你只需對 AI 說:「幫我規劃一趟京都三日遊,要有美食和景點,而且我去過的地方不要去。」AI 就能自動連上飯店、餐廳訂位網站,甚至直接把行程表送到你的手機裡。現在之所以做起來還有點愚笨,是因為 MCP 不夠充足。

我們沒有及時的景點資訊、飯店跟餐廳訂位也沒有相對應好存取的 MCP。MCP 還在發展的早期,許多服務也因為技術採用速度、穩定性、商業模式考量等尚未支援。MCP 的設定對非工程師族群尚有一些門檻。

上述美好的情景不一定會那麼快發生,甚至因為技術以外的問題不會發生。我仍相信有一天人類能做到或不能做到的事情,都可能會透過 MCP 或其他類似概念,讓 AI 能夠學會,拼湊出更不一樣的世界。很多事情不需要我們再手工一步一步拼接!如果那一天到來,我還是想要叫 AI 去幫我買菜跟洗碗,讓我可以更好享受煮菜創作的過程,這世界總有些 AI 可能做得比我們好,但我們想自己來的事。

▍後記

MCP 或許很快就會像半導體一樣無縫融入生活,下一代的人或許會理所當然地享受它帶來的便利,甚至連這概念本身都無需知道。而我們,正幸運地見證著 AI 世界快速蛻變的關鍵時刻。

作者 : Dcard 有在徵 infra manager~我們有很多大規模併發、底層機構的挑戰~同時如果有對推薦演算法有經驗的人才我們也都很歡迎聊聊!幫忙介紹推薦成功我也會給推薦獎金喔!!https://boards.greenhouse.io/dcard/jobs/6475999

Read more

如何抵抗大量無人機蜂群?Anduril Pulsar-L 將電磁戰力帶上前線,扭轉未來戰局

如何抵抗大量無人機蜂群?Anduril Pulsar-L 將電磁戰力帶上前線,扭轉未來戰局

高空之上,無數的無人機,如蝗蟲般,遮天蔽日,蠢蠢欲動。它們扇動著螺旋槳,發出低沉的嗡嗡聲,在空中盤旋襲捲著大地。戰士的目光銳利地則鎖定目標,毫不畏懼。他迅速拔出武器,槍口對準了可能存在的一切威脅。他隨時準備好,為守護他身後的一切而戰。透過簡單的控制台,看到了一切,也掌握了一切。突然,天空似乎破碎了,密密麻麻的無人機遮蔽了視線。這時,一陣金屬撞擊聲響起,地面震盪,無人機群開始墜落,失去控制,墜落於沙漠中。 這個令人屏息的場景,正生動地描繪了現代戰場的複雜與瞬息萬變,特別是面對日益普及且數量龐大的無人機威脅。而扭轉乾坤的關鍵,不再只是傳統的槍砲飛彈,更來自於一場看不見、摸不著的「無形戰爭」——電磁作戰(Electromagnetic Warfare, EW)。 長期以來,先進的電磁作戰系統因其複雜性、體積與操作難度,多半部署在大型軍艦、高價值飛機或固定的後方基地,難以有效支援最前線、最需要即時反應的戰術單位。然而,隨著科技進步與威脅型態演變(例如:大量且低成本的無人機),將強大的電磁戰力前推到「

By Fox Hsiao
YC合夥人談氛圍開發 (Vibe Coding) 的技巧

YC合夥人談氛圍開發 (Vibe Coding) 的技巧

馭 AI 而行:Vibe Coding 不只直覺,更是精準導引的新開發哲學 Y Combinator 合夥人 Tom 透過親身實驗發現,Vibe Coding 不僅能帶來令人驚豔的開發效率,更是一門可以透過學習與實踐不斷精進的技藝。這猶如當年「提示工程」興起之初,社群中不斷湧現新的竅門與最佳實踐。 然而,儘管名稱聽來不拘小節,許多能發揮 Vibe Coding 最大潛力的技巧,其實恰恰是資深軟體工程師們早已習以為常的專業工作方法。這場訪談集結 Tom 的觀察與 YC 新創團隊的實戰經驗,為我們揭示如何在與 AI 協作的新時代,更有效地將創意轉化為實際可運行的軟體。 啟動與規劃:穩健的第一步 要開始 Vibe Coding 之旅,選擇合適的工具是首要任務。對於沒有程式基礎的初學者或專注於使用者介面(UI)快速原型開發的設計師、產品經理而言,Replit 或 Lovable

By Fox Hsiao
學圍棋的時候,我其實是在重新學怎麼跟 AI 相處

學圍棋的時候,我其實是在重新學怎麼跟 AI 相處

前陣子在錄塞掐 podcast 訪談黑嘉嘉圍棋的行銷長 Yoyo 的時候,他提到他最近在做一堂圍棋課,講的是從基礎一路帶到 AI 對弈的學習體驗。 老實說,圍棋這題我以前比較少碰。不是沒興趣,是一直覺得這東西門檻太高,不知道怎麼進入門檻,也不知道怎麼學得有感。 但聊完之後我腦子一直在想:如果這個切角,是從「AI 如何陪你一起學」開始的呢? 再加上我本來就蠻推 AlphaGo 的紀錄片,那種人機交會、互相試探的過程,一直是我很著迷的議題。AI 不是工具,而是對話對象。當我們開始學會跟它互動,學會從它的角度思考,人類的學習曲線就會出現新的轉折點。 2016 年 AlphaGo 打敗李世乭那場比賽,大家應該都還記得。但我印象更深的,是李世乭幾年後在訪談裡說:AI 出現後,整體棋譜水準直接升了一個維度。 AI 不是只會快、算得準,而是下出了人類原本不會這樣選的路線。從那一刻起,我們就不只是用 AI,

By Fox Hsiao
《最後生還者》第二季首集 Future Days:末日新常態的史詩序章

《最後生還者》第二季首集 Future Days:末日新常態的史詩序章

作為一個只看過首季影集、只淺嚐遊戲 Part I 初期的資深影迷,終於等到《最後生還者》第二季開播,那種期待與興奮難以言喻。第一季以驚人的製作水準與情感深度征服全球觀眾,不僅是遊戲暢銷全球、改編後的影集更抱回艾美獎,無疑是實至名歸的肯定,當第二季首集〈未來歲月〉(Future Days)的片頭展開,那種熟悉又陌生的感受瞬間湧上心頭。 影集設定在第一季的五年之後,把我們帶到有著「正常」生活景象的懷俄明州傑克孫小鎮,這是相對安全的庇護所呈現出的末日後偏安,有組織的巡邏、運作且不斷茁壯的聚落社群,場景設計精緻入微,每一個環境細節都彷彿述說著這五年間的變遷。 最引人注目的莫過於喬爾與艾莉關係的微妙變化。第一季中那對相依為命的「父女」,如今卻瀰漫著難以言喻的疏離與緊張,也是本季片頭回顧第一季結尾那個道德兩難抉擇的結果,看著他們同框卻不再有溫馨對話,反而帶著沉默與偶發的怒氣,這種情感上的張力顯示出編劇對人性複雜度的準確把握。 影集的視覺效果有著驚人的水準,從傑克孫小鎮的冰封景觀、到廢墟超市建築的精細呈現、再到感染者的恐怖造型,每一幀畫面都經過精心設計與製作。環境細節的程度令人讚嘆,完全營造出

By Fox Hsiao