【客座文】MCP 是怎樣讓世界又更好一點點

最近研究 AI 領域的熱門新概念 MCP,原本覺得自己已經理解了,但當我第一次親眼看到 AI 透過 MCP 一口氣完成原本用 ChatGPT 要反覆多次才能解決的問題時,那種震撼感徹底顛覆了我的想像!發現自己對 MCP 從「理解」跟「體會」還是有一段落差。寫了一篇把我自己的心得打下來當作梳理自己的想法。

【客座文】MCP 是怎樣讓世界又更好一點點
mountains by GPT 4.5
本文作者,林裕欽,Dcard 共同創辦人與CEO,本文將帶您深入了解MCP如何突破傳統語言模型的限制,讓AI不僅能「說」,更能「做」。從理論到實踐,從現狀到未來,作者以親身體驗分享這項技術如何通過觀察與行動的循環,以及跨領域整合的網路效應,為我們的工作與生活帶來改變。

最近研究 AI 領域的熱門新概念 MCP,原本覺得自己已經理解了,但當我第一次親眼看到 AI 透過 MCP 一口氣完成原本用 ChatGPT 要反覆多次才能解決的問題時,那種震撼感徹底顛覆了我的想像!發現自己對 MCP 從「理解」跟「體會」還是有一段落差。寫了一篇把我自己的心得打下來當作梳理自己的想法。

▍MCP:讓 AI 把語言變成咒語 From language to spell

LLM 全文是 Large Language Model 大型語言模型,我們平常在使用 ChatGPT 的時候就是輸入一些文字、也是輸出一些文字。我們之所以會覺得 LLM 做出來得很聰明,把它稱為 AI,是因為那些文字用特定人類喜歡的規則排列。

例如蘊含很多知識量、條理分明、或富有創造力。然而不論這些文字多棒,單純資訊輸入輸出,能做的事情還是有限。我們使用 ChatGPT 時經常需要剪下貼上、或是按照 LLM 輸出的指示在現實生活中一步一步操作。有時候不小心做錯了、或是得到不如預期的結果,還要想辦法描述給 LLM 發生了什麼事情,等待下一步指令,實在令人很沮喪。

而 MCP (Model Context Protocol)的出現就是希望解決這樣的問題!MCP 是由 Claude 母公司 Anthropic 提出來的統一規範,讓 LLM 有了「控制」跟「觀察」其他事物的能力。LLM 一樣還是只是會文字的輸入輸出,但只要 LLM 按照規則輸出文字,就會由 MCP (client server host 架構) 把相關文字解讀成指令,去跟其他支援 MCP 的軟硬體互動。就像是有些文字突然變成咒語一般,讓依然只需要負責文字的 LLM 有了更多能力。

▍更好的觀察帶來更好的行動 Better Observations leads to better actions

看完第一段,你可能會用很多方式去描述:「這就是 API 的 API 吧!」「這是 AI 界的 USB!」這些說法都正確,但對有智能的 AI 的來說,改進不僅止「接起來」。

想像一個場景,今天如果我們左手打直拿著手機,再用右手點擊畫面上的一點,相信很多人都能夠輕鬆做到。然而同樣的任務,如果要求你只看一眼後閉上眼,右手再開始動作,要精準點擊到目標的難度就會大大大提升。這是因為一個看似簡單的動作,我們在運動的過程持續透過眼睛觀察去調整。

大腦會根據觀察到的訊號,時時調整每條相關肌肉的發力,最後達成看似簡單的目標。如果不會觀察,就很難把事情做好。繪畫、做菜、音樂、打球等皆是如此。每一次的短暫觀察與動作行為,讓每個任務變簡單,集合在一起就讓人類可以完成各式各樣了不起的事情。

最早將這樣觀察與行動循環帶入 LLM 領域的概念是 Agent。而早期的 Agent 能使用的外界工具有限,例如 Web Search 搜索網路上的結果。而 MCP 大大降低開發工具給 LLM 的門檻,同時賦予 LLM 「觀察」與「控制」外在事物的能力,讓許多任務透過觀察與控制循環得到更多資訊,達成原先 LLM 沒辦法一次就做到的事情。只看一眼後閉上眼睛,就像是我們過去下 prompt 指令一樣,希望 LLM 高表現一次就吐出正確答案。

而有了 MCP 後的 LLM 可以先「試試看」更多事情。例如叫 AI 寫個 3D 遊戲。它可以先試寫一段程式碼,透過 MCP 控制檔案系統跟遊戲編譯器,讓寫出來的程式碼跑起來看看。如果一但發現物理邏輯不如預期、或跑起來光線反射跟原先要求不一樣,可以再換段程式碼寫法,再試一次。

如此往復,讓遊戲越來越靠近用戶的要求。現在支援 MCP 的軟硬體還不算多,但正在以飛速增加中。最基礎如主流資料庫 mysql, postgres, bigquery 都有開源的 MCP 支援。上班族常用的 Excel、短推文媒體 X、財經資訊 Yahoo Finance 也都有 MCP 支援。因為能「試試看」的事情變多了,能做到的複雜任務也比過去多的更多。(ps. 懂寫程式的讀者可以去下載剛出爐的 claude code!寫程式的體驗會有 10x 的感受,看著 AI 自己寫 debug 程式碼試試看為什麼有 bug 的時候,我還記得自己在電腦前叫了出來!)

▍跨領域的網路效應 The Network Effects of Cross-Domain Integration

跨領域的人才能夠做出許多不可思議的事物。例如懂多國料理做法的廚師,能夠融合不同手法創作出新的料理。懂影像、音樂、心理學的講者,或許能把演講帶到下一個高度。人類世界有許多突破性的進展,是因為跨領域的借鏡跟串聯,最後形塑出許多美好事物。

我自己第一次體會到 MCP 震撼的時候,是把多個不同資料庫 MCP (postgres, bigquery) 設定好的第一次提問。原先需要好幾次 LLM 生成 SQL、查表格 、我再手動跑去不同介面執行的問題,支援 MCP 的 claude 一次提問就幫我完成。是 LLM 時代後又一次 10x 效率提升。

這時我想到如果掛上 dashboard (e.g. redash) 的 MCP。瞬間用自然語言產生一張可以持續使用、修改 dashboard 的全過程就被實踐了!這個過程不是簡單的自動化,而是 LLM 有意識的根據當前情境,做出下一步選擇,最後完成的傑出任務。每多一個 MCP,LLM 就對多一個領域有更多理解與控制的能力。

就像是有網路效應一般,能做到的排列組合以非線性增長。想像未來你只需對 AI 說:「幫我規劃一趟京都三日遊,要有美食和景點,而且我去過的地方不要去。」AI 就能自動連上飯店、餐廳訂位網站,甚至直接把行程表送到你的手機裡。現在之所以做起來還有點愚笨,是因為 MCP 不夠充足。

我們沒有及時的景點資訊、飯店跟餐廳訂位也沒有相對應好存取的 MCP。MCP 還在發展的早期,許多服務也因為技術採用速度、穩定性、商業模式考量等尚未支援。MCP 的設定對非工程師族群尚有一些門檻。

上述美好的情景不一定會那麼快發生,甚至因為技術以外的問題不會發生。我仍相信有一天人類能做到或不能做到的事情,都可能會透過 MCP 或其他類似概念,讓 AI 能夠學會,拼湊出更不一樣的世界。很多事情不需要我們再手工一步一步拼接!如果那一天到來,我還是想要叫 AI 去幫我買菜跟洗碗,讓我可以更好享受煮菜創作的過程,這世界總有些 AI 可能做得比我們好,但我們想自己來的事。

▍後記

MCP 或許很快就會像半導體一樣無縫融入生活,下一代的人或許會理所當然地享受它帶來的便利,甚至連這概念本身都無需知道。而我們,正幸運地見證著 AI 世界快速蛻變的關鍵時刻。

作者 : Dcard 有在徵 infra manager~我們有很多大規模併發、底層機構的挑戰~同時如果有對推薦演算法有經驗的人才我們也都很歡迎聊聊!幫忙介紹推薦成功我也會給推薦獎金喔!!https://boards.greenhouse.io/dcard/jobs/6475999

Read more

OpenAI CEO:AI 神性、員工離奇死亡以及馬斯克

OpenAI CEO:AI 神性、員工離奇死亡以及馬斯克

人工智慧是否具有生命?這個問題在大型語言模型如 ChatGPT 問世後,反覆縈繞在許多人心中。它能推理、產生未經程式設定的結果,甚至看似擁有創造力。然而,OpenAI 的執行長山姆・阿特曼(Sam Altman)對此提出清晰的見解。他認為,這些系統並不具備生命。 「它們不會主動做任何事,除非你提出要求。」阿特曼說明,這些模型缺乏自主性或內在動機,只是被動地等待指令。他認為,使用者與之互動越久,那種看似生命的幻覺就越可能消散。儘管如此,它們作為工具的強大能力無庸置疑,展現出近似智慧的表現。 幻覺、謊言與數學機率 當人工智慧提供錯誤資訊時,究竟是產生「幻覺」還是蓄意「說謊」?阿特曼解釋,這兩者之間存在根本差異。他以一個早期模型的例子說明:若使用者提問「塔克・卡爾森總統是哪一年出生?」模型可能會編造一個年份,而非指出此人從未擔任總統。 這並非出於欺騙的意圖,而是一個基於訓練資料的數學機率問題。「因為在訓練過程中,直接否定使用者的前提,並不是最可能出現的回應。」模型會假設使用者的提問基於事實,然後在其龐大的資料庫中,

By Fox Hsiao
Palantir CEO Alex Karp :不用戰爭也能擊敗中國的「太極戰略」,你看懂了嗎?

Palantir CEO Alex Karp :不用戰爭也能擊敗中國的「太極戰略」,你看懂了嗎?

軟體公司 Palantir 執行長亞歷克斯·卡普(Alex Karp)是一位同時擁有忠實支持者與激烈抗議者的科技領袖。他的公開談話,不僅僅是關於技術或商業,更深刻地反映一種獨特的世界觀,一種關於建立、競爭與西方價值體系的哲學。在這場訪談中,卡普對環繞著他與公司的各種爭議,提出一套完整且充滿挑戰性的論述。 面對為何有人支持、有人反對的提問,卡普將其支持者描繪為「實踐者」(builders)。他認為,這群人懂得欣賞成果,他們衡量一項成就的標準,是基於其是否能超越外界普遍預期的懷疑與折扣。卡普直言:「實踐者們看見那些極具天賦的人,會對所有言論打上折扣,並根據超越這個折扣率的表現來衡量成就。」 Palantir 的發展歷程充滿反直覺的挑戰,從商業模式到公開形象,始終不被看好,但最終以卓越的成果贏得這群人的信賴。 另一方面,他將抗議者歸因於一種由學術機構灌輸的「失敗者崇高論」。他認為,許多抗議者深信自己無法進入科技的核心圈,因而轉向一種假設失敗者更高尚的哲學模型。卡普批判道:「當你認為自己處於失敗的那一方,你就會假設道德不可能站在你的對立面。」他認為,這種思維源於部分學術機構,這些機構將美

By Fox Hsiao
馬斯克最新訪談:兩萬鎂機器人、AI 超越人類、30年移民火星、衛星直連手機服務

馬斯克最新訪談:兩萬鎂機器人、AI 超越人類、30年移民火星、衛星直連手機服務

在 2025 ALL-IN 訪談中,伊隆・馬斯克分享他對旗下數個野心勃勃計畫的最新進展與未來藍圖,從特斯拉(Tesla)的人形機器人、xAI 的通用人工智慧,到太空探索公司 SpaceX 的星艦與星鏈計畫,勾勒出一幅以科技突破確保人類文明永續發展的宏偉願景。 Optimus:定義未來的勞動力 Musk 堅信,Optimus 人形機器人將是人類的巔峰之作,並將其形容為人類歷史上最偉大的產品。目前,開發團隊正在進行第三版設計的定稿工作。他分析,要成功打造一款能普及的通用型人形機器人,必須克服三大挑戰:擁有與人類相仿的靈巧雙手、一個能理解並與現實世界互動的人工智慧心智,以及大規模生產的能力。 在這些挑戰中,又以手部的設計最為艱鉅。人手經過長時間演化,本身就是一台極度精密的儀器,能執行各種複雜任務。他強調,要創造一個通用的人形機器人,就必須解決手部的問題。 另一個重大障礙是供應鏈的匱乏。Musk 表示,由於現今市場根本不存在適用於人形機器人的關鍵零組件,團隊必須從頭設計與製造。他無奈地說,這些關鍵零件根本買不到,因為它們在市面上並不存在。 之所以堅持採用人形設計,背後有其務實的考量

By Fox Hsiao
哈佛證實:AI正在扼殺新鮮人的第一份工作!6200萬筆數據揭露的殘酷真相

哈佛證實:AI正在扼殺新鮮人的第一份工作!6200萬筆數據揭露的殘酷真相

生成式人工智慧(Generative AI)的浪潮正席捲全球,其對勞動市場的衝擊成為各界關注的焦點。當前的討論多半圍繞在工作機會的增減與技能需求的轉變,然而,一份來自哈佛大學的最新研究,透過分析大規模的美國履歷與職缺數據,揭示一個更細微卻極其關鍵的趨勢:生成式AI的導入,可能正在不成比例地影響資淺員工的就業機會,形成一種「偏重資歷的技術變革」(seniority-biased technological change)。 這份名為《生成式AI作為偏重資歷的技術變革》的初步研究報告,由研究者Seyed M. Hosseini與Guy Lichtinger共同撰寫。他們檢視自2015年至2025年間,涵蓋近6200萬名工作者、分屬28萬5000家美國企業的履歷資料,以及超過2.45億筆的職缺公告,試圖描繪出AI技術擴散下,企業內部人力結構的真實變化。 數據揭示的關鍵轉折點 研究的核心發現,在於企業導入AI前後,不同資歷員工的僱用趨勢出現顯著分歧。過往從2015年到2022年中期,無論是資深或資淺員工,其就業增長率大致維持同步。然而,一個明確的轉折點出現在2023年第一季,這恰好是生成

By Fox Hsiao