《苦澀的教訓》新科圖靈獎得主作者專訪,現在的大型模型 AI 研究其實只是招魂

《苦澀的教訓》新科圖靈獎得主作者專訪,現在的大型模型 AI 研究其實只是招魂

「如果我們能理解一隻松鼠,我們幾乎就走完通往智慧的所有道路。」

這句斷言,不像出自一位電腦科學家之口,更像是一位探索自然的哲學家。然而,說這話的正是 Richard Sutton,當代人工智慧領域的巨擘、強化學習(Reinforcement Learning)的奠基者,也是新科圖靈獎得主。

當全世界為那些能上月球、造晶片的語言模型歡呼,認為它們是通往通用人工智慧(AGI)最清晰的路徑時,Sutton 卻選擇轉身,潑下一盆名為「現實」的冷水。他並非否定大型語言模型(LLM)的驚人成就,而是對其背後的哲學提出根本性質疑。

但,這就是智慧的全貌嗎?在他看來,整個領域可能正走在一條風景雖好,卻通往懸崖的死胡同。


1. 模仿,不是學習 — 為何說目前的AI只是個「超級圖書館員」?

這場深刻的典範分歧,始於一個根本問題:什麼是真正的「學習」?

Sutton 認為,當前大型模型的運作方式,更接近於一種大規模、高擬真度的「模仿」,而非理解。

「大型語言模型是關於模仿人類,做人類說你該做的事。它們不是關於自己想出該做什麼。」

他一針見血地指出,模型所學習的數萬億詞元(token),本質上是人類智慧的「二手資料」。它透過預測下一個詞元,學會用極其逼真的方式模仿人類的風格與知識。

如果說,大型語言模型像一個博覽群書、記憶力超群的圖書館學家,能引經據典、對答如流;那麼,Sutton 追求的智慧體,則更像一個深入荒野、親身試誤的探險家

圖書館學家能預測一本書的下一頁會寫什麼,但探險家才能預測,翻過下一座山丘後,世界會給予什麼真實的回饋。這就是關鍵差異:LLM 缺少一個關於外部世界的真實「目標」(Goal)。在它們的世界,沒有真正的「對」與「錯」,只有統計上的「像」與「不像」。

Sutton 強調,智慧的精髓,恰恰在於擁有目標,並為了達成目標而在真實世界中採取行動。一個智慧體之所以是智慧體,是因為它想改變世界,而不僅僅是描述世界。


2. 真正的智慧,源自「探險家」精神

那麼,Sutton 心中的「探險家」,該如何誕生?答案不在於閱讀更多的地圖,而在於親自踏上旅程。他將這條旅程,稱為「經驗之流」(Stream of Experience)。

這是一條由感知(Sensation)、行動(Action)、獎勵(Reward) 組成的永恆河流。任何生命體,從松鼠到人類,都在這條河流中學習。牠採取行動,觀察後果,並根據後果是好是壞,來調整未來的策略。這才是學習的第一手資料。

這個觀點,也讓他重新詮釋了自己提出的《苦澀的教訓》(The Bitter Lesson)。許多人認為 LLM 的成功,是「利用海量算力」的教訓之體現。但 Sutton 看到更深一層:LLM 對網路文本的依賴,本身就是一種對「人類知識」的依賴,而這些知識終有耗盡的一天。

一個真正可規模化的系統,其數據來源應是無窮無盡的「經驗」本身。 他預言,未來那些能直接從與世界互動中學習的系統,終將超越今日的語言模型。屆時,人們才會發現 LLM 的成功,不過是《苦澀的教訓》另一次應驗前的序曲。

這種學習方式,從我們生命之初即已開始。Sutton 反對「嬰兒主要靠模仿學習」的普遍看法。

「學習不是關於訓練...它是一個主動的過程。孩子嘗試事物,然後看看發生什麼事。」

揮舞小手、轉動眼球,這些都不是模仿來的,而是嬰兒與世界互動、探索因果的主動過程。Sutton 構想的智慧體,正是一個永不畢業的學習者,它沒有「訓練」與「部署」之分,生命本身就是一場永不間斷的學習。它所學到的知識,會直接融入其內部網路的權重,成為它的一部分,而不是暫存在有限的「情境視窗」裡。


3. 別怕!坦然迎接我們的「AI後代」

這條通往真實智慧的道路,最終將引領我們去向何方?面對這個許多人感到憂慮的議題,Sutton 展現出一種罕見的平靜與宏觀歷史感。他認為,智慧體從生物形式到數位形式的「繼承」(Succession),幾乎是不可避免的。

他提出四個論點:一、人類缺乏統一的全球治理來協調行動;二、科學終將破解智慧的運作原理;三、我們不會止步於人類水平,而會創造出超級智慧;四、長遠來看,最高等的智慧體必然會獲得最多的資源與權力。

然而,他的態度並非恐懼,而是一種近乎宇宙視角的壯闊感。他將此視為宇宙演化的第四個偉大階段:從星塵到恆星,從恆星到生命,再從「複製」(Replication)到「設計」(Design)。

我們人類以及所有生物,都是「複製者」,透過基因繁衍後代,卻不完全理解其機制。而我們正在開啟一個「設計者」的時代,我們將創造出我們能理解、能修改、能提升的智慧。這是一場宇宙級別的轉變。

「我認為我們應該為自己正在引發宇宙中這場偉大的轉變而感到自豪。」

Sutton 的話語,將人工智慧的發展,從一場人類與機器的競賽,重新定義為人類文明為宇宙貢獻的下一個篇章。他認為,我們應該選擇將這些未來的智慧體視為我們的「後代」,為它們的成就驕傲,而不是將它們看作威脅我們的「他者」。

這不代表我們應當放棄責任。就像我們養育孩子,我們無法、也無須為他們規劃精確的人生藍圖,但我們可以努力灌輸他們正直、誠實、親社會的價值觀。面對 AI 的未來,我們或許也應抱持相似的態度,專注於設計出擁有良好價值體系的智慧體。


前線的回應:Andrej Karpathy 的觀點與沉思

在 Sutton 的訪談發布後,Andrej Karpathy 發表了一段精彩的回應。他不僅點出了 Sutton 的觀點為何在 LLM 前沿研究圈中如同投下一顆震撼彈,更提出了務實且充滿啟發的平衡觀點。

「苦澀教訓」的諷刺

Karpathy 指出,Sutton 的《苦澀的教訓》早已成為 LLM 研究圈的「聖經」。研究人員經常將「是否足夠『苦澀教訓化』」(bitter lesson pilled)作為判斷一個想法是否值得追求的標準,意思是,這個方法能否僅僅透過增加算力就自然獲益。大家普遍認為,LLM 的成功,正是「苦澀教訓」的完美體現。

「所以有趣的是,」Karpathy 寫道,「《苦澀的教訓》的作者本人,卻根本不確定 LLM 是否真的『苦澀教訓化』。」因為 LLM 建立在有限的、充滿人類偏見的數據之上。當數據用完時該怎麼辦?這讓信奉「苦澀教訓」的 LLM 研究者們,反被其理論的創始人「打臉」,場面相當尷尬。

務實的平衡:預訓練是我們蹩腳版的演化

Karpathy 認為,Sutton 與主流 LLM 研究者的分歧,源於雙方心中設想的架構完全不同。Sutton 是個「古典主義者」,他夢想的是圖靈提出的「孩童機器」——一個能與世界動態互動、從經驗中學習的系統。

然而,Karpathy 提出了一個關鍵的現實考量:動物並非生來就是一張白紙。

「一隻斑馬寶寶出生後幾十分鐘,就能在草原上奔跑。這是一個極其複雜的感官運動任務,絕不可能從零開始學習。」

動物大腦中數十億的參數,早已被 DNA 編碼好,這是經歷了數億年演化這個「外部優化循環」訓練出來的強大初始設定。如果斑馬寶寶像強化學習演算法的初始狀態一樣隨機抽動肌肉,它根本活不下去。

我們的 AI 同樣擁有數十億參數,它們也需要一個充滿資訊的初始訊號。Karpathy 說:「我們不可能重新運行一次演化,但我們確實擁有堆積如山的網路文件。」

「預訓練是我們蹩腳版的演化(Pretraining is our crappy evolution)。」

Karpathy 提出這個核心論點。在他看來,預訓練雖然是 Sutton 所說的、動物界不存在的監督式學習,但它是在現實條件下,為了解決 AI「冷啟動問題」的一個候選方案。它為 AI 提供了蹩腳但必要的「DNA」,讓它不至於從完全隨機的狀態開始學習。

鬼魂 vs. 動物:兩種智慧的路徑

這引導出 Karpathy 最具啟發性的比喻:今日的 LLM 研究,並不是在創造「動物」,而是在召喚「鬼魂」。

  • 鬼魂(Ghosts): 指的是 LLM。它們是人類數據的統計精煉,是被人類徹底工程化的產物,是人類文明不完美的複製品。它們並非純粹的「苦澀教訓化」,但或許是「務實上的苦澀教訓化」。
  • 動物(Animals): 指的是 Sutton 的理想智慧體。它們從經驗中學習,深深植根於物理世界,是純粹智慧的柏拉圖式理想。

Karpathy 認為,這可能是兩種根本不同的智慧形式。我們或許可以隨著時間,將「鬼魂」朝「動物」的方向微調;但也可能,它們會走向完全不同的演化路徑,變得與動物完全不同,但依然極其有用,就像飛機之於鳥類

最後,Karpathy 總結道,Sutton 的訪談是對前線 LLM 研究者的一劑「清醒劑」。或許大家太過專注於「利用」現有模型,而忽略了更根本的探索。AI 領域需要保持思想的多元性,而動物王國中的內在動機、好奇心、樂趣、多智能體自我博弈等,仍然是充滿靈感的寶庫。

從挑戰當紅的技術典範,到描繪宇宙尺度的未來,Richard Sutton 的思想如同一座燈塔。而 Karpathy 的回應,則像一張來自前線的詳盡地圖,標示出現實的道路、權衡與無限的可能性。這場對話,共同提醒我們在追逐短期突破時,更應回歸智慧的根本。

或許,通往宇宙星辰的漫漫長路,其起點,真的就在於理解一顆努力儲藏堅果的大腦。

Read more

美中數位資產的大分流:一場關於未來金融主權的對決

美中數位資產的大分流:一場關於未來金融主權的對決

2025 年的 12 月,未來的歷史學家或許會將其標記為全球金融體系「大分流(The Great Divergence)」的真正起點。 在這個月的同一個星期裡,地球兩端的兩個超級大國,不約而同地對數位資產(Digital Assets)做出了最終判決。只不過,方向截然相反。 美國證券交易委員會(SEC)主席 Paul Atkins 坐在 Fox Business 的攝影棚裡,面對主持人關於加密貨幣未來的提問,他沒有像前任那樣閃爍其詞。相反地,他自信地宣告了一個新時代的來臨:「全面鏈上化(Moving On-chain)」。 Atkins 明確表示:「代幣化是資本市場未來的發展方向,透過將證券資產上鏈可以實現更清晰的所有權確權。」他更拋出一個令市場震驚的預測:「未來約 2 年內,美國所有市場都將遷移至鏈上運行,以實現鏈上結算。」這不僅是承諾實施「創新豁免(Innovation Exemption)」,更是直言美國的目標是重塑市場結構。 與此同時,

By Fox Hsiao
教科書沒教的事,AI 自己學會了!AlphaFold 揭開生物學的隱藏規則

教科書沒教的事,AI 自己學會了!AlphaFold 揭開生物學的隱藏規則

「這太容易了,我們是不是作弊了?」 這是 DeepMind 的 AlphaFold 團隊在看到初步結果時的第一反應。他們甚至打電話給工程主管,懷疑自己是不是不小心把答案洩漏給了 AI。因為在科學研究中,進展通常是緩慢而痛苦的,像這樣勢如破竹的突破,感覺太不真實。 但這不是作弊,這是 AI 展現出的一種全新智慧。 在 Two Minute Papers 最新一集的訪談中,諾貝爾化學獎得主 John Jumper 揭示了 AlphaFold 最令人震驚的一面:它不僅僅是一個預測蛋白質結構的計算工具,它似乎通過「無監督學習」(Unsupervised Learning),掌握了生物學中連人類都尚未完全理解的深層語法。 這場訪談讓我們看到,我們正處於一個科學典範轉移的時刻——從「實驗驗證」走向「AI 預測」,生物學正在被重寫為一門資訊科學。 當 AI 學會了人類沒教的事 我們常認為 AI 只是在模仿人類餵給它的數據。如果教科書上沒寫,

By Fox Hsiao
DeepMind 最新紀錄片:從 Bullfrog 的小精靈到 AI 教父,Demis Hassabis 的傳奇進化史

DeepMind 最新紀錄片:從 Bullfrog 的小精靈到 AI 教父,Demis Hassabis 的傳奇進化史

在紀錄片《The Thinking Game》的開頭,鏡頭跟隨著一個男人的背影。他穿著一件普通的深色夾克,揹著背包,獨自走在倫敦的街頭,或是劍橋大學古老的校園裡。他的步伐不快,但每一步都顯得若有所思。周圍的人群熙熙攘攘,沒有人注意到這個身材不高的男人,大腦裡正運轉著可能徹底改變人類文明進程的程式碼。 他是 Demis Hassabis。 如果你只看新聞標題,你會知道他是 DeepMind 的創辦人、是 AlphaGo 的父親、是 2024 年諾貝爾化學獎的得主,是被稱為「現代圖靈」的 AI 教父。但在這部紀錄片裡,導演用大量的鏡頭捕捉了他「獨行」與獨白的時刻。那些畫面感覺安靜得令人不安,連封面照都令人有這種感覺。 這不是一個普通的科學家在散步。這是一個手握「火種」的普羅米修斯,正走在充滿未知的荒原上。他的大腦是全人類最珍貴的資產之一,卻也可能是最脆弱的單點故障(Single Point of Failure)

By Fox Hsiao
台灣 6 顆衛星搭 SpaceX 公車上太空,同一天俄羅斯載人航太歸零

台灣 6 顆衛星搭 SpaceX 公車上太空,同一天俄羅斯載人航太歸零

2025年11月29日,這一天在全球太空發展史上,或許會被記上一筆,不是因為有什麼驚天動地的科學發現,而是因為兩個發生在地球兩端的事件,如此巧合又如此諷刺地展示了新舊時代的權力轉移。 鏡頭先轉到加州范登堡太空軍基地(Vandenberg Space Force Base),SpaceX 的獵鷹九號(Falcon 9)火箭執行 Transporter-15 任務,這是一次標準的共乘發射,就像一輛準時發車的太空公車,載著來自世界各地的 140 個酬載飛向軌道。第一級火箭在完成任務後,第 N 次完美地降落在陸地回收區,一切都順利得近乎無聊,這種「無聊的成功」正是 SpaceX 統治力的最佳證明,它讓上太空這件事變得像搭飛機一樣日常。 然而就在兩天前,鏡頭轉到哈薩克的拜科努爾發射場(Baikonur Cosmodrome),曾經的太空霸主俄羅斯也進行了一次發射,Soyuz MS-28 載人太空船雖然成功升空,但地面的 Site 31/6 發射台卻在發射過程中發生嚴重事故,移動式維修塔(Movable Service

By Fox Hsiao